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SUMMARY

Pate1

are presented for the determination of the cree~ deflection-
time chsracteristi;s of an initially curved idealized H-secti& column.
These results were obtained from closed-form solutions of the differen-
tial equation of bending (derived in NACA TN 3137) of a beam column whose
creep properties are of a nonlinearly viscoelastic nature. The critical
time (the time required for infinite deflections to develop) established
by these solutions is tabulated and plotted for a wide range of the
parameters involved.

INTRODUCTION

The effect of creep on the behavior of initially curved columns was
previously investigated in reference 1, and the resulting deflection-
time characteristics were obtained for several values of the parameters
involved. It was found that every column whose material is subject to
nonlinear creep — snd this includes all columas made of structural metals
such as aluminum, steel, titanium, “andso forth, when subjected to high
temperatures — buckles if the axially compressive load acts upon it for a
sufficiently long time. This statement is true even though the compres-
sive force is less than the static critical load which is defined as that
load which would cause buckling instantaneously. Depending upon the ratio
of the applied load to the static critical load, the initial deviation
from straightness, smd the creep properties of the metal, the time
required for the development of infinite deflections — the so-called
critical time — may be anywhere between a few seconds and a few years.
It is of great importance to the structural designez of supersonic air-
craft to know how much the critical time of his structure is.

In the present report the differential equations derived in refer-
ence 1 for the analysis of the behavior of idea13.zedH-section columms
are solved in closed form for integral values of the exponent in the power
function defining the assumed creep law. These solutions sre used for the

●
determination of the deflection as a function of time of an initially
curved column whose end load is less than the static critical load of the
column. The critical time is calculated for a wide range of the exponent
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tables and charts which enable the
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includes the effect of end load snd
the calculations are presented in I.
designer to determine the critical
in the basic unisxial tensile or com-

pressive creep law.qre determined experiment@ly at design temperature.

The authors are indebted to Professor N. J. Hoff for his guidance
and criticism, to Professor F. V. Pohle for his assistance on the mathe-
matics contained herein, to Mr. R. Ortasse for his assistance with the
calculations, and to the National Advisory Committee for Aeronautics for
sponsorship of the research reported in this paper.

SYMBQLS

A

A,Bn,Cn

El_

fc

fi

fTo

h

I

11,12,J1,J2

L

m

n

r

~~ea of idealized H-section

constants

effective elastic modulus

amplitude of time-dependent deflection (accrued for
t >0) divided by h

amplitude of initial deviation from straightness of
unloaded colunm divided by h .—

amplitude at t = O of total deviation from x-axis of
loaded column divided by h (x-sxis is drawn between
end points of column), f@ - (z/GEy

distance between flanges of idealized H-section

moment of inertia of idealized H-section, Ah74

integrals

column length

exponent in viscosity term

integer

integer

.

—

s = ‘m~’2(-l)n c~sm-’(dd
n=l
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t

.
tcr

x

z

time

critical time

axial coordinate

alitude for t > 0 of total deviation from x-axis
divided by h, fc + fTo

strain

strain at t = 0, ~oh 1

viscosity coefficient

stress

average axial compressive stress

static buckling

constsnt stress

time parameter,

stress, n?EII/AL2

critical value of time parameter

time parameter correspmding to

functions of x

(T+Tcr as z-m)

z = 1/2

CREEP LAw

In the analysis of reference 1 the fundamental uniaxial tensile or
compressive constsnt-stress creep curve is approximated by a straight
line, the slope of which can be considered as the secondary creep rate of

. a real material (fig. 1). This idealization accounts for the actual second-
ary stage of creep (assumed to be of a viscous nature), approximates the
initial elastic or elastoplastic stage and the primary creep stage, and

.
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i~ores any final stage. The relation
stress corresponding to the simplified

between the strain rate and the
creep curve is

(o

in which G and a, respectively, are

effective modulus (fig. 1), m and A
cous behavior of the material, end the
ferentiation with respect to time t.

m, and 1. are considered as constants

the strain and stress, El is the

are parameters defining the vis-
dot over a symbol indicates dif-
The three material parameters El,

for a given temperature and can be
determined experimentally frdm conventional tensile or-compressive creep
tests. The corresponding relationship smong stress, strain, snd time for
such tests can be found from equation (1) if the strain Go at t = O

is taken as Co/El (ffg. 1). Thus

+0 = (E1/A)uom-l+i (2)

DEFLECTIONS OF A COLUMN WITH INITIAL CURVATURE

Differential equations were derived in reference 1 defining the
deflection-time characteristics of a simply supported idealized H-section
Collxnn(figs. 2 and 3) whose material parsmet.ersare the sams for tension
and compression. The column is assumed to be loaded instantaneously at
t = O with an axial load which remains constant for t >0. The differ-
ential equations derived were simplified with the aid of the assumption
that the sinusoidal shape of the centroidal axis of the unloaded column
was ~intained in the loaded column and only the amplitude varied. The
differential equations so obtained were readily solved in integral form.
Solutions to these equations are presented in table 1 in which the equa-
tions referred to are from reference 1.

In appendix A the integrals appearing in table 1 are evaluated in
closed form for any even or odd integral value of m. Hence the following
relations govern the deflection-time characteristics of the column ana-
lyzed for 5< u~. For m an odd integer (m> 1) with O< fTo <m

.

.
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T ( {1).(e+&_J ‘“g%)”-m-’(%)10. J’+;:!;!l
o Y

(3)

(){()‘“-2 (m-1)/2

‘cr = log ~ - (F) ‘“g p,.’+ tm’ *~ (.I)n ..s”-’ ~fi
m ‘T. n.1

($

(4)

For m an even integer (m > O) with o -CfTo ~ 1/2 ~d fTo ~ z ~ l/2~

( [ 1).=(qlogp_)+‘“g-’(-mc.sm-’(~)10.y’+::fp
To T

(5)

()(()

(m/2)-l

[D

[
l+t#Q2?

~1 . ‘m-2
log ~ + ~ (-l)n Cosm-’(+) log (1m

m 2fT n=l
[
4fT 2

+ ,m’ ~
o 0 ( )1m

(6)

with O < fTo ~ 1/2 and 1/’ ~ Z ~ W,

(7}
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.

Tcr =Tl+(2rn-2fi/ID2) & (-,)( m-n-1 )/2(111-n) S,nm-2(nT@) (8) .
n=l,3,... .

with l/2~fI_yo<m and fToSzSw,

tan ( Iii-1 2fTo tan ~

[
(9)

T ()2m-1 ~ ~-l)(m-n-1)/2 sinm-2 u
cr’~ ()[) [

‘1 2fTo
2m:

- tan
( 1}

tan m
n=l,z,... 2m

(lo)

column is constructed of a linearlyIf m= 1, the corresponding
viscous material (Maxwell material) and from reference 1 its exact
deflection-timebehavior is governed by the relations {see also refs. 2,
3, smd 4)

z = fTo6?2T (11)

and

‘cr =Ce (m)

Equations (3) to (ha) define completely t_hedeflection-time charac-
teristics of columns whose properties have been previously defined. It
may be noted that for all values of m greater than unity there exists a
finite critical time which is defined as that time at which the column
deflections increase.without limit.

.

“
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DISCUSSION

The results presented in equations (3) to (ha) can be used to deter-
mine the deflection as a function of time of columns whose properties are
approximated by those deBcribed earlier. With the aid of these equations
curves of deflection versus time for various values of the zero-time
deflection parameter ‘T. can be computed. Such curves sre presented

in reference 1 for a wide range of values of fTo and for m = 1, 2, 3, 4,

and 5.

Since the critical time parameter Tcr is a measure of the life

span of a column, this quanti%y is perhaps the most significant parameter
of the present analysis. Hence in table 2 and figures 4 snd 5 Tcr is

given as a function of ‘T. for a wide rsnge of the exponent m. The

results for integral values of m were obtained with the aid of equa-
.. tions (k), (8), and (10). However, for Mrge values of m it is more

convenient to determine Tcr from numerical integration of the pertinent

relations given in table 1, than it is to apply the corresponding closed-.
form solutions. It may be noted that results for m = 1.5 and m = 1.1
are ~lso included in table 2 and figure 4. These latter results were
obtained by performing the integrations indicated in table l(a) in closed
form for m = 1.5 and numerically for m = 1.1. In order to obtain the
actual critical time tcr of a given column with known values of the

applied stress 5 and smplitude of initial deviation from straight-
ness fi, results of uniaxial tensile or compressive creep tests corre-

sponding to the design temperature must be available. From such tifor-
mation the parameters El, m, snd A. can be deterdned. If these

parameters differ significantly for tension and compression tests, it is
suggested that they be chosen to correspond to the compression tests,
since for all total:deflection amplitudes zh < h/2 both flanges of the
H-section column sre in compression. In view of the simplifying assump-
tions regsrding the creep law, shape.of cross section, and affineness of
the shapes of the unloaded and loaded column,,the present results csn be
considered only as a first approximation in the analysis of actual colunns.

Polytechnic Institute of Brooklyn,
Brookljn; N. Y., Dec. 2, 1952.
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APPENDIX A

EVALUATION OF INTEGRALS AH9MRING IN

DEFLECTION-TIME RELATIONSHIPS FOR

INTEGRAL VALUES OF 13XPONENT m

The integrals required for the evaluation of the various deflection-
time relationships arising from the analysis of the creep deflections of
an axially loaded initially curved bar are from table 1

11 =
f/{
dz [(1/2)+ijm- [(1/2) - z]m-}

and

12 =

For integral values

evaluation for both

determined only for

In the ensuing
by

JA---dz z + (1/2)]m+ ~ -
m

(1/2fl }

(Al)

(A2)

of m, it is seen from table 1 that 11 requires

odd and even values of m, whereas 12 need be

even values of m.

calculations, the integrals 11 and 12 are replaced —
.

‘1 = J/dx Ol(x) _ (M)..

and

‘2 = J’/~ 02(X) , (A4)

in which Ql(x) = ~1 + X)m - (1 - x)m], 02(x) = [x + l)m+ (x - l)m],

x = 22, J1 = 21-m11, and J2 = 21-%2. Each of the required integrations

will be performed with the method of partial fractions.
*

.
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Determination of 11 for Odd Values of m

If the denominator of the integral in equation (A3) is equated to
zero, then the following relationship is obtained for the roots x of
the resulting odd mth-order polynomial:

(l+x)/(l -

in which the required roots of unity

X)=l l/m
(A5)

are

(A6)

l/m from equation (A6) into equation (A5) andHence, substitution for 1
subsequent solution for x yield

.
X = i tsn (nfi/m), n = 0, ~1, ~, . . . , ~(m - 1)/2 (A7)

. Thus, the denominator of equation (A,3)can be factored as follows:

Ol(x)
[

=Xx Y ][Q+tan~ (+J ● ● ● p+q(:)(rn-+}X2 + tanp 2“
m

(A8)

The integrsnd of J1 can be resolved into partial fractions to yield

l/@l(x) = (A/x) + ‘m~~(’nx + cn)/[~ + ‘m2(n’/mfl

in which A, Bn, and ~ sre constants. From equation (A9)

{ ‘m*/2(Bnx+cn~[x2+t=2(n./m)]}=1%(x) (A/x) +

and hence A is determined from the condition that, since o~(o)

ltm @l(x)(A/x) =~~o AOI’(X) = 1
X+o

(A9)

(A1O)

= o

(All)
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in which the prime indicates differentiation with respect to x. Hence

.

(A12)

Similarly, since @l[i

lim ‘31(X)
x+i tan (nn/m)

tsn (nfi/m)]= O? .—

(m-l /2

dnl (%x+ cn)/[x2+ t~2(nfi/m)]
=

= Mm q’ (x)(%X + Cn)p.x
x+i tan (nr/m)

for each n= lj 2, . . ., (m- 1)/2. Thus
“

{[ }
Bni tan (n~/m) + Cn~/2i tan (nfi/m) ~’[i tan (nfi/m)]= 1 (A14) __

From equation (A7)

(l*x)=e *(nfi/m)i/cos(nfi/m) (A15)

and hence

2-m(nn/m)@l’[i tan (nn/mfl = *(-l)n cos

Equations (A14) and (A16) yield

~ = (l/m)(-l)n cosm-2(nn/m)

and

&.()

.-

(A16)

(A17)

.
.-

.
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From equations (A9), (A12), and (A17), the integrand of J1 becomes

.
(m-1)/2

l/Ol(x) = (1/2m)(l/x) + (l/m) ~ (-l)n cos

[ }
‘-2(nfi/m)x/[x2+t~2(nfi/mj

n=l

(A18)

Hence from equations (Al), (A3), and (A18), after performance of the
indicated integration, the following expression is obtained for the indef-
inite integral 11 for odd integral values of m >1

{

Il=(2m-2/m) log2. +(m#/2(-l)n .o#-2(n./m) ~o~[~#jt=2(nn/m)
n.J_ 1}

(A19)

Evaluated between the limits z and fTo, 11 becomes

lI(zYfTo) (.(~) lay)+

(m-1 /2

2

[)

[ (j
422 + tan2Q-

()
(-l)n cosm-2 : log

m

[

(A20)
n=l + ta2 nfi

(j
4fT 2 —

o m

lim I1(z,fTo)
Z+m

(Am)

In the determination of equation (A21) use was made of the relationship

(m-1 /2

9 (-I)n cosm-2(nfi/m)= -1/2
n.1

(A22)
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in which m is an odd integer greater than Wity. This relation is
derived in appendix B.

—.

Determination of 11 for Even Values of m

.—

The present analysis is performed in a msnner smalogous to that of
the preceding calculations. Since m is now,an even integer the poly-
nomial @l(x) in equation (A3) is of order .m - 1. The required

(m - 1) roots of Ol(x) sre then

[x= i tan (nfl/m), n = O, fl, 3?, . 4 .j t (m/2) - g (A23)

Since equations (A7) and (A23) differ only @ the choice of values of n,
the resulting expression for, 11 of the preceding section can be used

.-

in the present calculations provided the u er limit on the summation
----

sign in equation (A19) is replaced by (m~~ ---1. Hence for even integral ““
values of m

—
.

( /)[ (m/2)-l
11 = j2M-2 m log 22 + ~ (-l)n cosm-2(nfi/m)log ~z2 + tan2(nfl/m) .

n=l

(A24)

Also

()(()

2m-2
I1~,fTo) = ~ log ~ +

f
To

(m/2)-l

[)

( ) FZ2 + t~2(%~ (A2,]~ (-l)n cosm-2 = log
n=1 m

[
- 4fT 2 *W+ tan

o (1m



NACATN 3138 13

If the
relation is

Determination of- ~ for Even Values of m

denominator of equation (A4) is equated to zero, the following
satisfied by the roots x of 02(X):

(x + 1)/(x - 1) = (_&/~ (A27)

in which

(-l)l/m=~(nfi/m)i) n=

Solution of equation (A27) together

x = -i cot (nn/2m), n =

Hence

~1 t3, . . ., *(m _ 1)> (A28

with equation (A28) yields

*1, k3, . . ., *(m - ~) (A29’

m-1
l/@p(x) = E (Bnx

n=l,3,5,...
+ Cn)/[# + cot2(nn/2mjl

Since

(A30)

(A31)
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and
.

Op’ [-i cot (nfi/2m)]= 2mi1-m(-1)(‘-1)’2 sin2-m(nn/2m) (A32~

Bn=O .—

and

Cn = (1/m)(-l)(m-n-1)/2 =0s (nfi/*m)sinm-3(nfi/*m) (A33)

Therefore.fromequations (A2), (A4), (A30), ad (A33) for even ~tegral
values of m

I*= (2m-1/rtl) =1 ~-l~(m-n-l)/* sinm-2(nfi/2m)fian-L[2ztan (nfi/*m] .
n=l,3,5,...

(A34) .

(*)ng,,,,.}-l)(m-n-’)’2s@-2=12(Z,fTo) = =
(2m)[% “’431-

tan-l[ ( 1}2fTo t~ :m (A35)

12(~,,fTo)= (*m-’/m) ~ (-l)(m-n-’)/2 sinm-2(nn/2m) (se/2)
n=l,3,5,... {

r
t# *fTo I}tan (nfi/2m) (A36)
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( ~-pfiimz) ~ (-l)(m-n-’)/2(m-n) sinm-2(nfi/2m)12(a,l/2) = 2
n=l,3,5,...

(A38)

15
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APPENDIX B

(m-1 /2
DERIVATION OF THE RELATION d (-l)B cosm-2(nn/m) = -1/2

n=l .. —.

FOR ODD INTEGRAL VALUES OF m

In appendix A I1(cu,fTo) was determined with the aid of the rela-

tionship

(m-1)/2
s= ~ (-l)ncosm-2(nn/m)

n=1

-1/2 (Bl) d .-=

in which m is any odd integer greater than unity. Equation (Bl) will
now be shown to be valid. From reference 5.,page 69,

cosm-2(nfi/m)=23-m ‘m~’2(m~2) ..s ~m - 2r - 2)(nfi/m)J

in which the binomial coefficient (ref. 5, p. 19) is

Equations (Bl) and (B2) y~eld

defined as

.

(B2)

(B3)

s = ~ (-l)n (m~2) cos [(m - 2r - 2)(nfi/m~
#-m(m~/2 (m-3/2

n=l r=o

With the order of summations interchanged, equation (B4) becomes

s . 23-m ‘mj&2(m;2)(m#/2(-1)”cos [(m - 2r - 2)(fl/m)n]
r=o n=l

—
(B4)

—
(B5)

. .

.
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l?romreference 5, page 82,

.
(m-1 /2

Z! [
(-l)n cos (m - 2r - 2)(n/m)~ =

n=l

(-(1/2) 1- (-l)@)@ c..~[(m-
1

2r - 2)( Tr/2jJ\cos ~m - 2r - 2)(7r/2m~

(B6)

Since m is odd, m - 2r - 2 is also odd, and therefore equation (B6)
reduces to

(m-1)/2
~ (-l)ncos [(m- 2r-2)(fi/m)n]= -1/2 (B7)
n=l

. Equation (B7) together with equation (B5) yields

. s = _22-m ‘m~/2(m;2)

r=o

From reference 5, page 19,

m-2
m-2

Q )
2m-2=

r
r

(B8)

(B9)

The number of terms under the summation sign in equation (B9) is m - 1
which, since m is odd, is an even number. From equations (B3) it can
be seen that the binomial coefficients are symmetric. Hence the sum of
the first (m - 1)/2 terms under the summation sign of equation (B9) is

(1/2)(2m-3 =2m-3. In order to obtain this sum from equation (B9), let
r =0, 1, . . ., (m - 3)/2. The number of terms considered is,then
(112)(m - 3) + 1= (m- 1)/2. Consequently

and, therefore,
.

* which was to be

‘mg2ry)‘ 2m-3

equation (B8) yields

s = -1/2

proved.

(B1O)
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TABLE l.- INTEWU9 RWJmC3D FOR D~RtlNATION 03? T AS A FUNCTION OF Z

[Reproducedl%oraref. 1]

(a) m even integer (or rractioid

(b) m cdd inte~r

I %. z T ‘crI

%. (’9).

%% (3’).

%a. (30).

%. (31).

%. (33).

%. (3k).



TABLE 2.- VALUES OF Tcr FOR l.l<m<lk AND O. Ol<fTO$ 1.00

2

2.741

2.395
1.937
I.. 769

1.590

1.244
1.041

.Wi

.785

.695

.619

.559

.507
,.464

3

2.974

2.512
1.9Q2

1.679

1.444

.994

.745

.579

.462

.375

.310

.2?9

.219

.18i’

7
m

~I!.

).01
.02

.05

,07
.10
.Zb
.30
.40
.50
.60
.70
.80
,90

L.(XI

4 65

5.612

4.505

3.053

2.529
1.985

1.042

.m

.379

.248

.169

.119

.0838

.0633

.0477

7.165
6.918

3.178
2.852
2.420

2.261

2.093

1.765

1.571
1.433

1.323

1.231

1.153

1.087

3.891

3,198
2.286

1.955
1.628

,969
.643
.449
.325
.242

. lm

. lkk

.1.15
.Ogl-l

8.502
6.759
4.352
3.h02
2.628

1.191
:610

.359

.200

.125

.0800

,0534

.0371

.0259

13.73

10.58

6.&3

3.048
3.624

1.417
.635

.313

.167

.0940

.0557

.0344

.0220

.0145

6.i71

6.306
6,134

5.795

5.597
5.456

5.344

5.252

5.175
5.108

@_Mi-
— —

8 9 10 11 E 1413

22.56
17.05

9.943
7.499

5.131
1.716

.667

.292

.143

.0733

.0398

.0227

.o134

.0083

37.96
28.18

15.68

11.47

8.018

2.169

.745

.291

.125

.0583

.0291

.0153

. CKi15

.CQ49

64.91

47.35

25. n

17.79

11.07

2.754

.828

.287

.111

.0469

.0215

.0105

.0053

.0029

lIQ.6

E!O.71

40.80

27.97

16.59
3.560
.932
.288
.100
.0386
.0161
.0073
.0035
.ooli’ j

197.4
139.2

67.03

44.48

25.11
4.598

1.OX
.250

.0$09

.0319

.OI.22

.0051

.0023

.0011

349.4

242.3

111.2
71.36

38.33

6.021

1.21.3
.295

.0833

.0265

.0094

.0036

.0015

.00065

623.6

425.3
185.8

115.2
58.95

7.940

1.400

.304

:0769

.0223

.0072

.0325

.0009

. (X)O4

0.01
.02
.05

.07

.Io

.20

.30

.40

.50

.&l

.70

.80

.90
1.00

, ** a
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